Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
JCI Insight ; 6(7)2021 04 08.
Article in English | MEDLINE | ID: covidwho-1112383

ABSTRACT

INTRODUCTIONThe clinical course of coronavirus 2019 (COVID-19) is heterogeneous, ranging from mild to severe multiorgan failure and death. In this study, we analyzed cell-free DNA (cfDNA) as a biomarker of injury to define the sources of tissue injury that contribute to such different trajectories.METHODSWe conducted a multicenter prospective cohort study to enroll patients with COVID-19 and collect plasma samples. Plasma cfDNA was subject to bisulfite sequencing. A library of tissue-specific DNA methylation signatures was used to analyze sequence reads to quantitate cfDNA from different tissue types. We then determined the correlation of tissue-specific cfDNA measures to COVID-19 outcomes. Similar analyses were performed for healthy controls and a comparator group of patients with respiratory syncytial virus and influenza.RESULTSWe found markedly elevated levels and divergent tissue sources of cfDNA in COVID-19 patients compared with patients who had influenza and/or respiratory syncytial virus and with healthy controls. The major sources of cfDNA in COVID-19 were hematopoietic cells, vascular endothelium, hepatocytes, adipocytes, kidney, heart, and lung. cfDNA levels positively correlated with COVID-19 disease severity, C-reactive protein, and D-dimer. cfDNA profile at admission identified patients who subsequently required intensive care or died during hospitalization. Furthermore, the increased cfDNA in COVID-19 patients generated excessive mitochondrial ROS (mtROS) in renal tubular cells in a concentration-dependent manner. This mtROS production was inhibited by a TLR9-specific antagonist.CONCLUSIONcfDNA maps tissue injury that predicts COVID-19 outcomes and may mechanistically propagate COVID-19-induced tissue injury.FUNDINGIntramural Targeted Anti-COVID-19 grant, NIH.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Multiple Organ Failure , Organ Specificity/genetics , SARS-CoV-2 , Biomarkers/analysis , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , COVID-19/mortality , Cell-Free Nucleic Acids/analysis , Cell-Free Nucleic Acids/blood , Cohort Studies , DNA Methylation , Female , Humans , Male , Middle Aged , Multiple Organ Failure/blood , Multiple Organ Failure/diagnosis , Multiple Organ Failure/etiology , Outcome Assessment, Health Care , Prognosis , Prospective Studies , Reproducibility of Results , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Severity of Illness Index , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL